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ABSTRACT

A Greenfs function formulation of an arbitrarily oriented off-axis dipole radiating in a dielectric rod

waveguide is carried out. The analysis ia applied to the problem of scattering from an arbitrarily–located
inhomogeneity in a step-index optical fiber.

SUMMARY

There is much current interest in dielectric
surface waveguides in view of their applications in
fiber optical communication systems. Many theoretical
and practical problems are involved. An important
problem is the excitation of surface waves and radia-

tion by infinitesimal dipole sources in cylindrical

dielectric waveguides. One of the simplest structures,

which is, nevertheless, of great practical utility is
the cylindrical dielectric rod. Duncanl (1959) and
Brow and Stachera2 (1962) have studied the excitation

of the circularly symmetric surface wavea on a die-
lectric rod by a magnetic current ring, while Yip3
(1970) investigated the excitation of the HE1l mode

by a transversely-oriented infinitesimal dipole on the

axis of a rod.

The treatment of an arbitrarily–oriented off-axis

dipole involving a Green’s function formulation has not

been available so far. The surface–wave fields, how–

ever, can be evaluated by employing the Lorentz reci-

procity theorem involving the use of the orthogonality

properties of the modal fieldsk (1960). But this
method does not provide any information about the
radiation fields. It is the purpose of this paper to

present a rigorous Green’s function analysis of an off-
axis and arbitrarily oriented dipole in a two–layer
cylindrical dielectric waveguide. Further, the practi–
cal significance of such a formulation is illustrated
by its application to the problem of radiation and mode
conversion due to scattering from an arbitrarily-
located discrete inhomogeneity in a step-index optical
fiber.

The dielectric rod, characterized by a permitti-
vity of e

1
= EoErl and a permeability of VI = poprl ia

assumed to be lossless and infinitely long with its
axis coinciding with the z–axis of a cylindrical

coordinate system (p,@,z). It has a radius PI and is

surrounded by an infinite cladding medium (s2 = & E
O r2,

P* = PolJr2) . A point electric dipole with an arbitrary

orientation is placed at p , @ , z
000

as shown in Fig.

la, b. The time variation is assumed to be of the
form exp(–jut). Without loss of generality, Z. is set

to zero. The current density on the dipole can be
expressed as

j = (JP60 + J@@o + JZ~o) ~ (~-do) (1)

where ~ o , $0 and to are unit vectors at Po, $., 0,

along the radial, azimuthal and axial directions

respectively as indicated in Fig. lb and 6 (~–~o) is the

three dimensional delta function. The evaluation of
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Fig. 1: Geometry of the problem.

(a) The dielectric rod and the point
dipole.

(b) Current components in the dipole.

radiation and surface-wave fields amounts to solving a

set of two inhomogeneous wave equations. The technique

used for solving these wave equations involves: (a) a

coordinate transformation in the z=O plane such that
the new origin is at Po, @o, O and the new x axis makes

an angle @o with the old x axis, (b) transformation of

the fields and the current density by meana of a
Fourier tranaform integral. After solving the wave
equations for the transformed fields in the new coordi-

nate system, we make use of the Graf’s formula5 to

express the fields in terms of the old coordinates,
Finally, the actual fields can be derived from

t’=
‘o I

jko~zdF

f(p,$,z) =— F(p,@,E) e

271 _m

(2)

~being the normalized axial propagation constant. In
(2) f and F represent a component of the_electric or
magnetic field, or current in the z and (3 domains
respectively. The integral in (2) ia evaluated by
means of a contour integration. The contribution from
the branch–cut integral gives rise to the radiation
fields, which is evaluated by the saddle-point method

of integration. In addition to the branch-cut integral,

contributions to the contour integral also come from
the residuea at the enclosed poles, which account for

the guided surface-wave modes. The field solutions

thus obtained can be immediately applied to the problem
of radiation and mode conversion due to scattering from
an arbitrarily–located off-axis inhomogeneity in a
step-index fiber, if the current in the dipole is
replaced by the current induced by the incident mode
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in the dielectric inhomogeneity given by ~=-jws AE 31

+i
Or’

where E is the field of the incident mode and AC is
r

the relative permittivity difference between the
inhomogeneity and its surrounding medium. The norma-

lized total radiation power can be expressed as

~r = Pr/(AErA~)2 Pi, where Pi is the incident modal

power and A; = AV/P13 is the normalized volume of the

inhomogeneity. The variation of ~r with the normalized

frequency V = koplv’Erl - Er2 for several values of

are shown in Fig. 2.

z

10

Fig. 2: The normalized total radiated power ~r

versus the normalized frequency V.

& = 2.341, Er2 = 2.25o.
rl

For simplicity of presentation, only fiber operating

‘n ‘he ‘ominant ‘En ‘ode ‘s considered. ‘he angul-ar
position of the inhomogeneity, $., is taken to be zero.

The behaviour of the radiated power is largely

determined by the variation in the incident field

strength. Thus, as frequency increases, the power

fOr POIP1 < 1 increases, whereas for po/pl > I, after

reaching a msximum, decreases. This can be explained
by the fact that as the frequency increases, the
incident fields and hence the power become more and

mOre confined to the core, but decay exponentially
in the outer cladding.

The field solutions for the guided modes can again

be directly applied to evaluate the guided field and
power scattered by the inhomogeneity discussed before.
Again, the normalized power scattered into a particular

mode, ie. , mode conversion, is given by ~F=Ps / (AErA~) 2P..1
Figs, 3 and 4 show the variation of the normalized
scattered power for several lower order modes versus
frequency. In Fig. 3a, the variation of power for the

‘Cattered ‘En ‘ode ‘s ‘how.
For values of po/pl < 1

00

00. (

Fig. 3: The normalized scattered modal power ~s

versus the normalized frequency V.

E = 2.341,cr2 = 2.250.

(~: HE1l (b) HE12 (c) EH1l

the power increases with frequency, whereas for

Po/Pl > 1 it decreasea rapidly after reaching a maximum,

This can be explained by the same reason advanced for
the radiation power. Variations of power for the

‘Cattered ‘E12 and ‘Hll ‘odes are ‘h- ‘n ‘ig. 3b’c
and for the TM

01’ ‘E21 and ‘E31
modes in Fig. 4a,b,c

respectively. It is readily observed that they all

have the general behaviour as the HE1l mode. The

‘E12
mode at po/pl = 0,5, however, exhibits a peculiar

behaviour. After an initial increase, the power of

this mode drops to -30.1 dB at V=7 and then rises to
-0.38 dB at V=1O. This drop in the power ia caused by

the fact that the field strength of this mode for
certain values of po, $0 and V becomes very small.

The Green’s function solution of the problem

treated is exact and can be used to check the accuracy
Snyder6 (1969) has usedof the approximate solutions.

the infinite medium approximation for evaluating the
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Fig. 4: The normalized scattered nmdal power ~
s

versus the normalized frequency V.

E = 2.341, &K2 = 2.250.
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radiation power. The power calculated by this approxi-

mate method is sufficiently accurate for waveguides

with small dielectric differences between the core
and the cladding. It, however, fails to predict the

accurate radiation pattern and radiation fields.

Comparisons with the approximate results will be made.
The spatial distribution of the radiated power, and

the radiation power patterns have also been calculated
and the results will be presented. The radiation

patterns are markedly different from those calculated
from the in finite–medj urn approximation.

It is emphasized that, although we treated the

case of a single–mode fiber only, the analytical formu–
lation developed here is capable of handling the
general case of an arbitrary incident mode. Further-

more, the analysis permits the study of other cylindri-

cally stratified dielectric waveguides including those
used in millimetric communication systems.
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